Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nature ; 546(7659): 485-491, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28640263

RESUMO

Aerosols have a potentially large effect on climate, particularly through their interactions with clouds, but the magnitude of this effect is highly uncertain. Large volcanic eruptions produce sulfur dioxide, which in turn produces aerosols; these eruptions thus represent a natural experiment through which to quantify aerosol-cloud interactions. Here we show that the massive 2014-2015 fissure eruption in Holuhraun, Iceland, reduced the size of liquid cloud droplets-consistent with expectations-but had no discernible effect on other cloud properties. The reduction in droplet size led to cloud brightening and global-mean radiative forcing of around -0.2 watts per square metre for September to October 2014. Changes in cloud amount or cloud liquid water path, however, were undetectable, indicating that these indirect effects, and cloud systems in general, are well buffered against aerosol changes. This result will reduce uncertainties in future climate projections, because we are now able to reject results from climate models with an excessive liquid-water-path response.

3.
Faraday Discuss ; 165: 495-512, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24601019

RESUMO

Aerosol radiative forcing over the industrial period has remained the largest forcing uncertainty through all IPCC assessments since 1996. Despite the importance of this uncertainty for our understanding of past and future climate change, very little attention is given to the problem of uncertainty reduction in its own right, mainly because most uncertainty analysis approaches are not appropriate to computationally expensive global models. Here we show how a comprehensive understanding of global aerosol model parametric uncertainty can be obtained by using emulators. The approach enables a Monte Carlo sampling of the model uncertainty space based on a manageable number of simulations. This allows full probability density functions of model outputs to be generated from which the uncertainty and its causes can be diagnosed using variance decomposition. We apply this approach to global concentrations of particles larger than 3 and 50 nm diameter (N3 and N50) to produce a ranked list of twenty-eight processes and emissions that control the uncertainty. The results show that the uncertainty in N50 is much more strongly affected by emissions and processes that control the availability of gas phase H2SO4 than by uncertainties in the nucleation rate itself, which cause generally less than 10% uncertainty in N50 in July. Secondary organic aerosol production is assumed to be very uncertain (5-360 Tg a(-1) for biogenic emissions) but the effect on global N3 uncertainty is < 3% except in a few hotspots, and generally < 2% for N50. A complete understanding of the model uncertainty combined with global observations can be used to determine plausible and implausible parts of parameter space as well as to identify model structural weaknesses. In this direction, a preliminary comparison of the model ensemble with observations at Hyytiala, Finland, suggests that an organic-mediated boundary layer nucleation mechanism would help to optimise the behaviour of the model.

4.
Proc Natl Acad Sci U S A ; 108(38): 15710-5, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21930954

RESUMO

Historical records show that the A.D. 1783-1784 Laki eruption in Iceland caused severe environmental stress and posed a health hazard far beyond the borders of Iceland. Given the reasonable likelihood of such an event recurring, it is important to assess the scale on which a future eruption could impact society. We quantify the potential health effects caused by an increase in air pollution during a future Laki-style eruption using a global aerosol model together with concentration-response functions derived from current epidemiological studies. The concentration of particulate matter with diameters smaller than 2.5 µm is predicted to double across central, western, and northern Europe during the first 3 mo of the eruption. Over land areas of Europe, the current World Health Organization 24-h air quality guideline for particulate matter with diameters smaller than 2.5 µm is exceeded an additional 36 d on average over the course of the eruption. Based on the changes in particulate air pollution, we estimate that approximately 142,000 additional cardiopulmonary fatalities (with a 95% confidence interval of 52,000-228,000) could occur in Europe. In terms of air pollution, such a volcanic eruption would therefore be a severe health hazard, increasing excess mortality in Europe on a scale that likely exceeds excess mortality due to seasonal influenza.


Assuntos
Poluição do Ar/efeitos adversos , Previsões , Mortalidade/tendências , Erupções Vulcânicas/efeitos adversos , Poluentes Atmosféricos/análise , Algoritmos , Saúde Ambiental/métodos , Saúde Ambiental/normas , Monitoramento Ambiental/métodos , Monitoramento Ambiental/normas , Monitoramento Epidemiológico , Europa (Continente)/epidemiologia , Geografia , História do Século XVIII , Humanos , Islândia/epidemiologia , Tamanho da Partícula , Material Particulado/análise , Medição de Risco/métodos , Medição de Risco/normas , Fatores de Risco , Erupções Vulcânicas/história
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...